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We introduce Deep Curiosity Search (DeepCS), a directed 
exploration algorithm inspired by intrinsic motivation in 
animals, that rewards agents for “doing something new” 
within their lifetime. Using some domain knowledge, 
DeepCS matches the performance of other state-of-the-art 
techniques on hard Atari games like Montezuma’s Revenge.

Traditional exploration methods reward across-training 
novelty: whether a state is new compared to all other 
states that have been seen before.

Across-training novelty might not Across-training novelty might not 
revisit initially unimportant states, revisit initially unimportant states, 
even if they would be useful later.

Curiosity Search instead encourages intra-life novelty, 
rewarding agents for visiting new states even if they have 
been seen in prior training episodes.

Overview

Background

Intra-life novelty encourages agents 
to go everywhere in each lifetime, to go everywhere in each lifetime, 
increasing the chance of finding a increasing the chance of finding a 
better ordering of state visitations.better ordering of state visitations.

Methods

● Game world is discretized into a uniform grid using RAM.
● Agent receives grid as extra input, as in previous work.1

● Intrinsic rewards are given for touching new grid tiles.

Results
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Montezuma's Revenge

Naïve exploration algorithms usually achieve no score at all on 
Montezuma’s Revenge (MR), while Deep Curiosity Search (DeepCS) 
matches the performance of other state-of-the-art methods:

On 5 games, Deep Curiosity Search performs similarly or better 
than popular naïve- and directed-exploration algorithms:

Exploration

The best Deep Curiosity Search agent explores 15 
rooms of Montezuma’s Revenge, matching other 
state-of-the-art exploration methods:

Typical naïve methods rarely exit the first room:

Even when the curiosity grid fills up quickly, the 
brief-lived intrinsic rewards can boost exploration:

Frame 0 (start):Frame 0 (start):
the grid has not yet the grid has not yet 
been explored; been explored; 
DeepCS can provide DeepCS can provide 
lots of feedbacklots of feedback

Frame 700:Frame 700:
intrinsic rewards intrinsic rewards 
decline; DeepCS decline; DeepCS 
can no longer can no longer 
provide feedbackprovide feedback

Frame 28,500:Frame 28,500:
even brief presence even brief presence 
of intrinsic rewards of intrinsic rewards 
allows single agents allows single agents 
to get 76,000 pointsto get 76,000 points

Conclusions

● Encouraging intra-life novelty is an interesting 
new technique for improving exploration, in both 
sparse- and dense-reward domains.

● Providing agents with a visual memory of where 
they have been may help improve exploration.

● More general determination of agent position 
(e.g. by rewarding novelty in the latent space of an 
auto-encoder) may help Deep Curiosity Search 
become a general, even more useful tool.
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Seaquest

DeepCS also improves performance on some games in which 
directed exploration is seemingly not required, like Seaquest:


