Deep Curiosity Search: Intra-life exploration can improve performance on challenging deep reinforcement learning problems Christopher Stanton (U. Wyoming) and Jeff Clune (U. Wyoming, Uber Al Labs)

Overview

We introduce Deep Curiosity Search (DeepCS), a directed exploration algorithm inspired by intrinsic motivation in animals, that rewards agents for "doing something new" within their lifetime. Using some domain knowledge, DeepCS matches the performance of other state-of-the-art techniques on hard Atari games like Montezuma's Revenge.

Background

Traditional exploration methods reward *across-training novelty*: whether a state is new compared to all other states that have been seen before.

Across-training novelty might not revisit initially unimportant states, even if they would be useful later.

Intra-life novelty encourages agents to go everywhere in each lifetime, increasing the chance of finding a better ordering of state visitations.

Curiosity Search instead encourages *intra-life novelty*, rewarding agents for visiting new states even if they have been seen in prior training episodes.

Methods

- Game world is discretized into a uniform grid using RAM.
- Agent receives grid as extra input, as in previous work.¹
- Intrinsic rewards are given for touching new grid tiles.

Results

Naïve exploration algorithms usually achieve no score at all on Montezuma's Revenge (MR), while Deep Curiosity Search (DeepCS) matches the performance of other state-of-the-art methods:

DeepCS also improves performance on some games in which directed exploration is seemingly not required, like Seaquest:

On 5 games, Deep Curiosity Search performs similarly or better than popular naïve- and directed-exploration algorithms:

	DQN ²	A3C ³	PC ⁴	PCn ⁵	DeepCS
Amidar	739	283	964	900	1404
Freeway	30	0	30	31	33
Gravitar	306	269	246	859	881
MR	0	53	3439	3705	3500
Tutankham	186	156	132	190	256
Alien	3069	518	1945	1700	2705
Kangaroo	6740	94	5475	7900	2837
Pitfall	-	-78	-155	0	-186
Private Eye	1788	206	246	15806	1105
Seaquest	5286	2300	2274	2500	3443
Venture	380	23	0	1356	12
Wizard of Wor	3393	17244	3657	2500	2134

[1] C. Stanton and J. Clune, "Curiosity Search: Producing generalists by encouraging individuals to continually explore and acquire skills throughout their lifetime," PLoS ONE, 11(9): e0162235. [2] Mnih et al., "Human-level control through deep reinforcement learning," *Nature*, vol. 518, pp. 529-533, 2015. [3] Mnih et al., "Asynchronous methods for deep reinforcement learning," in Proceedings of the 33rd International Conference on

Machine Learning, vol. 48, pp. 1928-1937, 2016. [4] Bellemare et al., "Unifying count-based exploration and intrinsic motivation," *30th Conference on Neural Information Processing Systems*, 2016. [5] Ostrovski et al., "Count-based exploration with neural density models," in *Proceedings of the 34th International Conference on*

Machine Learning, vol. 70, pp. 2721-2730, 2017.

Exploration							
The best Deep Curiosity Search agent explores 15 rooms of Montezuma's Revenge, matching other state-of-the-art exploration methods:							
Best DeepCS:							
15 rooms							
Bellemare et al. ⁴							
	_						
Typical naive methods rarely exit the first room:							
2 rooms							
Even when the curiosity grid fills up quickly, the brief-lived intrinsic rewards can boost exploration:							
0 80 </td <td></td>							
Frame 0 (start):Frame 700:Frame 28,500:the grid has not yetintrinsic rewardseven brief presebeen explored;decline; DeepCSof intrinsic rewardsDeepCS can providecan no longerallows single agelots of feedbackprovide feedbackto get 76,000 po	nce Irds ents oints						
Conclusions							
 Encouraging intra-life novelty is an interesting new technique for improving exploration, in bot sparse- and dense-reward domains. Providing agents with a visual memory of whe they have been may help improve exploration. More general determination of agent position 	h ere						

(e.g. by rewarding novelty in the latent space of an auto-encoder) may help Deep Curiosity Search become a general, even more useful tool.

UNIVERSITY of WYOMING

